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Abstract. The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal
and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution.
Nuclear power in stars governs their lifetimes and of coursethe stellar nucleosynthesis. The nuclear reactions are at the heart
of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound
consequences on the evolution of stars and galaxies.

The energy extracted from the gravitational, respectivelynuclear reservoirs during the lifetimes of stars of different masses
are estimated. It is shown that low and intermediate mass stars (M < 8 M⊙) extract roughly 90 times more energy from their
nuclear reservoir than from their gravitational one, whilemassive stars (M> 8 M⊙), which explode in a supernova explosion,
extract more than 5 times more energy from the gravitationalreservoir than from the nuclear one. We conclude by discussing
a few important nuclear reactions and their link to topical astrophysical questions.
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THE LEADING ROLE OF GRAVITY

In this paragraph we mention a few textbook results which areat the heart of the understanding of the evolution of
stars. More details can be obtained for instance in the following books: Kippenhahn and Weigert [16], Maeder [21].
Stars continually lose energy from their surface. This lossat the surface is a consequence of the equilibrium of two
forces in the interior of stars. On one side, there is the gravity which holds together the gas. Alone this force would
make matter fall to the center in a free fall timescale proportional to 1/

√

Gρ, whereG is the gravitational constant and
ρ, the mean density of the object. On the other side, there is the force resulting from pressure gradients which tends to
inflate the star. This last force is linked to the random movement of the gas particles and to the pressure due to photons
(radiative pressure)1. It implies that the material must be hot and therefore must emit radiation. Thus the luminosity of
a star is a necessary consequence of its hydrostatic equilibrium.

An expression for the luminosity can be obtained without reference to any specific source of energy. Using the
hydrostatic equilibrium equation, the radiative transferequation and an equation of state (see e.g. Maeder [21]), it can
be shown that the luminosity is roughly proportional toµ4M3/κ , whereµ is the mean molecular weight (i.e. the mass
per free particle in units of an atomic mass unit) andκ the opacity, these two quantities being representative forthe
whole material making the star. Thus the luminosity of a staris determined from global properties of the star and not
by the specific mechanisms which produce the energy. These mechanisms adapt themselves in order to compensate for
the losses of energy at the surface of the star. Note that beside the luminosity, many other properties of stars, such as
the central pressure, temperature or density can be derivedfrom the hydrostatic equilibrium and an equation of state.
Very interestingly also a natural scale for the mass of starscan be obtained, expressed only in terms of fundamental
constants of physics (Chandrasekhar [4]).

Where do the nuclear reactions get involved in this picture?They are involved when one tries to estimate the
lifetimes of stars. In absence of any nuclear reactions, stars would evolve in much shorter timescales. This timescale
would be the Kelvin-Helmholtz timescale which can be simplyexpressed as half the ratio of the gravitational energy
to the luminosity of the star,i.e GM2/(2RL), whereM, R andL are respectively the mass, radius and luminosity of the
star. This is of course a rough estimate. But typically for a star like the sun it amounts to a value of about 30 My, while

1 For a star like the sun, the radiation pressure is negligibleand the whole weight is supported by the gas pressure. In contrast for more and more
massive stars, radiation pressure becomes more and more important. Typically, in a 60 M⊙ star, during the Main-Sequence phase, the radiation
pressure contributes to about 30% of the total pressure, while in the 1 M⊙, it contributes only to 5 ten thousandths to the total pressure in most of
the interior.
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for a 20 M⊙, it would be of the order of 100 000 y. Actually, this timescale corresponds to the duration of the slow
contraction from the Hayashi line to the ZAMS,i.e. of a phase during which gravity is quasi the only energy source in
the star (quasi because some energy may be produced by nuclear reactions involving very light and fragile chemical
species as deuterium for instance).

Let us explain in more details the meaning of the Kelvin-Helmholtz (KH) timescale, starting from an equilibrium
situation between gravity and the pressure gradient. Without any heating mechanism, the thermal gradient inside
a star would on the long term disappear and the temperature will decrease, like when one switches off the source
of heat below a boiling water pot. This however cannot happenin stars because of the gravity. Indeed, when the
pressure gradient decreases, gravity is no longer perfectly counterbalanced and thus the gas contracts. The contraction
is slow because pressure gradients are present and thus thiscontraction does not occur in a free fall timescale as it
would if gravity were acting alone. While contracting, the gas warms up, building up a new pressure gradient, able, at
least temporarily, to again counterbalance gravity. The energy which serves to heat the material comes from gravity.
Actually, the Virial theorem (see e.g. Maeder [21]) tells usthat only about half of the gravitational energy released
by the contraction is used to warm up the material (and thus used to reach a new hydrostatic equilibrium), the other
half is radiated away. This explains the factor 1/2 in the expression of the Kelvin-Helmholtz timescale. The quantity
GM2/2R can be interpreted as the thermal energy which has been accumulated inside the star since the beginning of
its contraction, a similar energy having been radiated awayby the star.

Interestingly, this KH timescale was one of the first quantitative and physically motivated estimates of the age of the
Sun (see a modern account of this story in Stinner [23]). Thisestimate received a strong support by the fact that the age
of the earth deduced from its past thermal history gave an agecompatible with the KH lifetime of the Sun! However
geologists at that time (end of the nineteenth century), or the tenants of the Darwin theory for the origin of the species
required for valleys to be formed, or for species to evolve, much longer timescales. So there was a paradox! Various
processes, observed on our planet, indicated ages for the earth orders of magnitudes greater than the age of the Sun.
This was particularly embarrassing since erosion, as well as life need the solar energy to occur!

Gravitational energy reservoir is large enough for explaining the luminosity of stars, but it gives too short timescales.
So there comes the need for another source of energy than gravity, and this is where nuclear reactions come into play
(see Chapter 3 in Longair [18] for a very nice historical account of this discovery). A very rough expression for the
Main-Sequence lifetime of a star is given by the expressionXqM0.007c2/L where,X is the mass fraction of hydrogen
(typically 0.7),q the fraction of the total mass of the star where core H-burning occurs (about 10% for a 1 M⊙ star),c,
the velocity of light. This expression is based on the fact that every time a unit mass of hydrogen is transformed into
helium, 7 thousandths of that mass is transformed into energy. For the Sun, this expression gives a lifetime of the order
of 10 Gy thus much longer than the KH timescale.

Nuclear energy allows a pressure gradient to be maintained without the need for the star to contract too much. Still
some contraction of the central regions occurs because the fuel diminishes. When a fuel has been completely consumed
in the core, the core has to tap into the gravitational reservoir and contracts until physical conditions for new nuclear
reactions to occur are realized or until the star arrives at the end point of its evolution (see more below). During the core
H and He-nuclear burning phases, because contraction is slowed down, the central temperature varies less than during
the phase when no nuclear burning occurs in the core. In the advanced phases of massive stars, neutrino emission may
remove quantities of energies equal to those produced by thenuclear reactions, in that case gravity becomes the main
source for compensating the energy radiated away at the surface.

The evolution of a star is a continuous contraction at least of the central parts and very high densities are reached
when the stars arrives at the end of its lifetime. Most stars,except may be the most massive ones (see below), or those
forming a black hole, will lock part of their core in an objectsustained by a degenerate gas of electrons (white dwarfs
for initial masses below about 8 M⊙) or of neutrons (for initial masses above 8 M⊙, although not all stars will end
as neutron stars in this mass range, some will give birth to black hole or are completely disrupted). When the gas is
completely degenerate, the pressure depends only on the density and thus the pressure gradient, needed to sustain the
mass against gravity, is obtained through a density gradient. Now, such a density gradient has no possibility to evolve
being locked by gravity. This is in contrast with a temperature gradient which always triggers an energy flux and thus
implies an evolution. Thus a star sustained by a degenerate gas no longer evolves.

Actually this is not exactly true because in a white dwarf, the ions are not degenerate and thus can cool. This makes
the cooling sequence of white dwarfs (see e.g. [15]). Moreover, in case a companion is sufficiently near the WD, some
mass transfer may occur. This induces high temperatures in the accreted material which produces a nova, or in some
circumstances causes the collapse of the WD. This collapse induces nuclear reactions in highly degenerate regimes
which completely blow up the star (type Ia supernovae). In a similar way, neutron stars and black hole do no longer
evolve in the sense that their state does not imply any radiation (at least in usual terms).



FIGURE 1. Left panel: Evolutionary tracks in the theoretical Hertzsprung-Russel diagram for stars with masses between 0.8 and
120 M⊙. The metallicity is solar (Z=0.014) and the stars start their evolution on the ZAMS with asurface equatorial velocity equal
to 40% the critical velocity. The critical velocity is the velocity that the star should have for the centrifugal force atthe equator to be
equal to the gravity. The colors indicate the level of surface nitrogen enrichment at the surface in terms of the nitrogento hydrogen
ratio (in number). The grey shaded area shows the Cepheid instability strip. This figure is taken from Ekström et al. [9]).Right
panel: Evolution of the same models as in the left panel in the plane central temperature versus central density. The colors indicate
the size of the convective core in fraction of the total mass of the star. The grey shaded areas shows the part of the tracks where
nuclear burning occur during the H-, He- and C-burning phases.

NUCLEAR VERSUS GRAVITATIONAL ENERGY IN STARS

Just above, we saw the respective roles of the gravitationaland nuclear power in stars. Let us now estimate the amount
of energy released by gravitational contraction and by nuclear reaction during the whole lifetimes of stars of various
initial masses. As we shall see this leads to a marked difference between the low and intermediate mass stars on one
side and the massive stars on the other. A first estimate of these energies has been presented in [6], with interesting
considerations about the source of energy to accelerate thecosmic rays.

The case of low and intermediate mass stars (M < 8 M⊙)

Let us begin by estimating the energy extracted from gravityby a 1 M⊙ star. This energy can be obtained simply
by computing the binding energy of the remnant, which is a white dwarf of about 0.5 M⊙ (M⊙ ≈ 2×1033 g) whose
radius is about 0.001 R⊙ (R⊙ ≈ 7×1010 cm). One obtainsEgrav= G× (0.5×M⊙)

2/(0.001×R⊙) = 1050 ergs or 6×
1061 eV.

Let us now compute the energy extracted from the nuclear reservoir. The white dwarf is made mostly of carbon and
oxygen. The binding energy per nucleon in oxygen is about 8 MeV per nucleon (the binding energy of carbon nuclei
is not very different). Thus the total energy coming from thenuclear reservoir is,Mp being the mass of a nucleon,

Enucl =
0.5×M⊙

Mp
8= 500×1061eV= 5×1057MeV.

One sees that for a 1 M⊙ star, the total energy from nuclear reactions is about 500/6=83 times larger than the energy
extracted from gravity. If we divide the energy extracted from nuclear reactions by the solar luminosity one obtains
66 Gy. This is greater than the solar lifetime because the luminosity is not constant during the whole lifetime. We also
overestimate a little here the nuclear energy released because not all the mass of the white dwarf will be composed of
carbon and oxygen.



Let us now consider how these energies vary as a function of the initial mass. For stars evolving into WD, the WD
mass can vary between about 0.5 and 1.4 M⊙, the radius of the white dwarfs varies asM−1/3. The binding energy of a
WD with mass equal toMWD is, using the result above for a 0.5 M⊙ WD:

Egrav=
(MWD/0.5)2

(MWD/0.5)−1/3
6×1061eV=

(

MWD

0.5

)7/3

6×1061eV.

For Enucl, we have

Enucl =
MWD

0.5
500×1061eV.

The ratio between the gravitational and nuclear energy becomes

Egrav

Enucl
=

(

MWD

0.5

)4/3

0.012.

The mass of the white dwarf can be related to the initial mass,M (in M⊙), through relations obtained from
“observations" (between brackets because this kind of observation involves a lot of theory, see Catalan et al. [2]).
For initial masses below 2.7 M⊙, one has

MWD = 0.096×M+0.429.

For initial masses above 2.7 M⊙ and below 8 M⊙, one has

MWD = 0.137×M+0.318.

Using the Salpeter Initial Mass Function, the number of stars with masses betweenM andM+dM is given by dN/dM=C
M−2.35, where C is a constant. The energy released from gravity by stars with initial masses between 0.9 and 2.7 M⊙

per star in a stellar generation is therefore

< Egrav(0.9−2.7)>= 6×1061

∫ 2.7
0.9 M−2.35

(0.096×M+0.429
0.5

)7/3
dM

∫ 120
0.01M−2.35dM

= 6×10610.4997
371

∼ 0.01×1061eV.

It is worthwhile to make a few remarks here

1. This is the energy released when all stars have terminatedtheir evolution. We chose the value of 0.9 M⊙ for the
lower bound of the masses that can contribute to the release of gravitational energy since the lifetime of these
stars is just of the same order as the age of the Universe. Thisestimate does not include the energy released by
type Ia SNe. It should be counted inEnucl, since this type of SNe are triggered by the nuclear energy.

2. For obtaining the energy released from gravity by stars with masses between 0.9 and 2.7 M⊙, when N stars are
born with masses between 0.01 and 120 M⊙, it suffices to multiply the number above by N.

3. If one would like to have the energy released extracted from gravity by stars with masses between 0.9 and 2.7
M⊙ per solar mass locked into star in one generation, the denominator should be the integral ofM−1.35 over 0.01
and 120 M⊙.

In a similar way, the energy released from gravity by stars with initial masses between 2.7 and 8 M⊙ per star in a given
stellar generation is

< Egrav(2.7−8)>= 6×1061

∫ 8
2.7M−2.35

(

0.137×M+0.318
0.5

)7/3
dM

∫ 120
0.01M−2.35dM

= 6×10610.3034
371

∼ 0.005×1061eV.

Thus the order of magnitude is the same as for the mass range between 0.9 and 2.7 M⊙.
We compute now the energy extracted from the nuclear reservoir, again distinguishing the mass range between 0.9

and 2.7 M⊙ and the one between 2.7 and 8 M⊙. One obtains respectively the two expressions below:

< Enucl(0.9−2.7)>= 500×1061

∫ 2.7
0.9 M−2.35

(

0.096×M+0.429
0.5

)

dM
∫ 120

0.01M−2.35dM
= 500×10610.7482

371
∼ 1.01×1061eV.

< Enucl(2.7−8)>= 500×1061

∫ 8
2.7 M−2.35

(0.137×M+0.318
0.5

)

dM
∫ 120

0.01M−2.35dM
= 500×10610.2697

371
∼ 0.36×1061eV.



The case of massive stars (M > 8 M⊙)

For a 20 M⊙ star, the remnant will be a neutron star of about 1.5 M⊙, of radius about 10 km. Thus one has

Egrav=
G× (1.5×M⊙)

2

1.4×10−5R⊙

≈ 38200×1061eV≈ 6×1053ergs.

The energy extracted from gravity by a 20 M⊙ is more than 6000 times larger than for a 1 M⊙ star.
The mass of neutron stars may vary between about 1.5 and 2.5 M⊙. The radius varies asM−1/3. For a neutron star

of massMNS, one has

Egrav=

(

MNS

1.5

)7/3

38200×1061eV.

Typically, for MNS=2.5 M⊙, the energy extracted from gravity will be(2.5/1.5)7/3 larger than for the 1.5 M⊙, that
means a factor 3.3 larger.

The binding energy per nucleon of iron is 8.8 MeV. The size of the iron core in a 20 solar mass star is of the order of
1 M⊙, the CO layers,MCO, around the iron core have a mass of about 3 M⊙ and the He layers (6.6 MeV per nucleon),
MHe, around the iron-CO core have a mass around of about 2 M⊙. So the total energy released from nuclear reaction
by a 20 M⊙ star is of the order of

MFe

mp
8.8+

MCO

mp
8.0+

MHe

mp
6.6∼ 6000×1061eV= 1×1053ergs.

For a massive star, the energy extracted from gravity is about 6 times greater than the energy released by the nuclear
reactions. In the case of the 20 M⊙, we have that the total mass of the star processed by nuclear burning is Mnucl=6
M⊙. The averaged binding energy per nucleon in that region is (8.8+3×8.0+2×6.0)/6= 7.7 MeV. Below, we shall
assume that in stars of different initial masses, Mnucl is given by the mass interior to the He-rich layers and that the
averaged binding energy per nucleon in that region is equal to 7.7 MeV. The mass Mnucl scales with the initial mass as
MHe ∝ M0.92. So the energy extracted from nuclear reactions from a mass M would be (supposing that 7.7 MeV are
extracted per nucleon in Mnucl):

Enucl =

(

M
20

)0.92

6000×1061eV.

This means that a 9 M⊙ will release an energy about half that of a 20 M⊙, while a 120 M⊙ will release about 5 times
the energy of a 20 M⊙ stars. If we assume that all massive stars evolve into a neutron star of 1.5 M⊙, one has that

Egrav

Enucl
=

(

20
M

)0.92

×6.4.

The upper initial mass limit for neutron star formation is not known, probably around 25-30 M⊙ (but likely depends
on metallicity, rotation). There is no indication on how themass of the neutron star will depend on the initial mass.
Let us suppose that all stars between 8 and 30 M⊙ evolve into a 1.5 M⊙ neutron star, while more massive stars evolve
into a BH without any release of energy (likely not a very realistic hypothesis, but the question of what does happen
when a black hole is formed is still a matter of discussion. The present hypothesis implies that the estimate made here
is a lower limit to the gravitational energy released by massive stars, but see below). In that case, the energy released
from gravity from stars with masses between 8 and 120 M⊙ per star in a stellar generation will be

< Egrav(8−120)>= 38200×1061
∫ 30

8 M−2.35dM
∫ 120

0.01M−2.35dM
= 38200×10610.0372

371
∼ 3.8×1061eV.

In case one assumes that all stars between 8 and 120 M⊙ evolve into 1.5 M⊙ neutron stars, the energy released would
be 4.5 1061 eV2.

2 If we suppose that during a BH formation, gravitational energy is released up to the point when the collapsing object reaches a radius equal to
the last stable orbit, then about 6% of the mass of the BH is radiated away. Assuming that all stars above 30 M⊙ form black holes equal to their
initial mass (an extreme hypothesis), then it is easy to estimate the energy released per star in a stellar generation by black hole forming objects, it
is equal to 1050 ergs per star, or 6.1 1061 eV, so less than 2 times the gravitational energy released byneutron star forming objects. This is of course
a significative increase but to account for it or not does not drastically change the main points of this paper. Moreover this is an upper limit since we
assume BH with masses equal to the initial mass.



TABLE 1. Energy extracted from the gravitational and nuclear reservoirs by different stellar
populations. To convert the energies in Bethe (1051 ergs) multiply the numbers by 1.6 10−2.

Type of Energy 0.9-2.7 M⊙ 2.7-8.0 M⊙ 8-120 M⊙ 0.9-120 M⊙

per star formed between 0.01 and 120 M⊙ in 1061 eV

GRAV 0.01 0.005 3.8 3.8
NUCL 1.01 0.36 0.7 2.1
Total 1.02 0.365 4.5 5.9

per solar mass forming stars with initial masses between 0.01 and 120 M⊙ in 1061 eV

GRAV 0.27 0.13 102.33 103
NUCL 27.20 9.69 18.85 56
Total 27.47 9.82 121.18 159

The energy released from nuclear reactions from stars with masses between 8 and 120 M⊙ will be

< Enucl(8−120)>= 6000×1061

∫ 120
8 M−2.35

(

M
20

)0.92
dM

∫ 120
0.01M−2.35dM

= 6000×10610.042
371

∼ 0.68×1061eV.

Discussion

In Table 1, the results for various populations are indicated. A first striking point is that the low and intermediate
mass stars differ from the massive stars by their ratio ofEgrav to Enucl. In the low and intermediate mass star regime,
nuclear energy dominates being about 90 times larger than the gravitational energy. For massive stars, the gravitational
energy is about 5.5 times larger than the nuclear energy. This comes of course from the fact that massive stars, at the
end of their lifetimes, create remnants that are much more compact. Globally, a stellar generation will produce about
twice as much energy by contraction as it produces through nuclear reactions.

Where does the bulk of gravitational energy extracted by theend of the star’s life goes? Is this just thermal photon
emission, is it in neutrinos, or is it in mechanical energy? We know the answer in the case of massive stars which end
in core collapse supernovae. In that last case, most of the gravitational energy is released at the time of the supernova
explosion and is ejected as neutrinos (1053 ergs). About 1% is released as kinetic energy (1051 ergs) and about 1/10000
as radiation (1049 ergs). For small and intermediate mass stars, the energy from gravity is used to compensate for the
radiation losses at the surface during the lifetime of the star. A part of it compensates for losses under the form of
neutrino emissions in the last evolutionary phases of thesestars.

For all these stars, low, intermediate and massive stars, most of the energy driving stellar winds comes from the
nuclear reservoir, since most of the time, stellar winds aredriven by radiation during the long nuclear burning phases.

FROM NUCLEI TO GALAXIES

As written above, if gravity has the leading role governing the evolution of stars, nuclear reactions have a deep impact
on how this evolution occurs:

• They make stars live much longer than they would in case only the gravitational energy reservoir would be at
their disposal.

• They modify the chemical composition of stars, changing their thermodynamic properties, the equation of states
and the opacity, shaping the evolutionary tracks and the distribution of stars in the Hertzsprung-Russel diagram,
the photometric and the chemical evolution of galaxies.

• Thanks to nuclear reactions, stars build up the elements needed for the planet formation as well as for the
apparition of their inhabitants (if any!) triggering thus culture in the cosmos!

A universe without nuclear reactions would be completely different from the one we know and we would not be
there to study it! To conclude this brief paper, we would liketo underline a few reactions whose impact is important in



the frame of topical astrophysical problems. For the sake ofbrevity, only a few comments will be made and references
are given for more details.

14N(p, γ)15O and the age of globular clusters

This reaction occurs in H-burning regions. It is responsible for the synthesis of nitrogen in the Universe. The rate of
14N(p, γ)15O from Mukhamedzhanov et al. [20] is about half the NACRE value (Angulo et al. [1]) for temperatures
below 108 K, and compares well with other determinations like LUNA Collaboration et al. [19]. In the low-mass
domain, the effects of lowering this rate has been studied byImbriani et al. [14] and Weiss et al. [25]. They describe
a slower H-burning process, and shallower temperature profiles leading to a more extended and slightly hotter core.
The turn-off point is shifted towards higher luminosities.This leads to some revision of the ages of globular clusters
(Imbriani et al. [14]) that are increased by 0.7-1 Gyr with respect to ages obtained from models using the reaction rate
from NACRE. In the intermediate-mass domain, the studies ofHerwig et al. [12], Weiss et al. [25] show that with
slower rates, the MS evolution occurs at higher luminosities, and that later, the blue loops during core He burning get
significantly shorter.

12C(α , γ)16O and the yields of carbon and oxygen

This reaction occurs in He-burning regions of stars. It is responsible for the synthesis of carbon and oxygen in the
Universe. It has also an impact on many outcome of stellar models, the core He-burning lifetime, the formation of blue
loops, the nature and properties of the stellar remnants. The rate from Kunz et al. [17] is around 0.6-0.8 the NACRE
value below 6·108 K, and around 1.1-1.4 the NACRE value above this temperature. Previous studies by Weaver &
Woosley [24] and Imbriani et al. [13] explored the effects ofvarying this rate. A stronger rate in the He-burning
temperature range leads to larger cores, lower12C and higher16O yields.

17O(α , γ)21Ne and the origin of s-process elements at low metallicity

This reaction occurs in He-burning regions of stars. The ratio of this reaction with respect to the reaction17O(α,
n)20Ne is important to estimate the output of thes-process in massive stars. Let us explain why. At the end of the core
He-burning of massive stars, reactions like22Ne(α,n)25Mg produce neutrons, which can then be captured by iron-peak
nuclei to produce neutron-rich nuclei (the so-called weak s-process). It is well known that16O is a neutron poison
capturing them through the reaction16O(n,γ)17O, and thus preventing them to form heavier nuclei.16O is particularly
relevant here since it is very abundant at the end of the core He-burning phase. Now the neutron can be released again
by 17O(α, n)20Ne. Depending on this rate (and more precisely on how it compares with the competing channel17O(α,
γ)21Ne), significative differences are obtained in the production of s-process elements (see Frischknecht et al. [10]).
Before we discuss the present uncertainties of the reactionrate of17O(α, γ)21Ne, let us recall the broader context of
s-process elements production in massive stars at very low metallicity.

The question of the s-process in massive stars has been recently rediscussed in the frame of rotating models. It was
shown that in massive rotating stars at very low metallicity, the weak s-process could be much stronger that what was
believed until now (Pignatari et al. [22]; Frischknecht et al. [10]). In metal-poor rotating massive stars, much more22Ne
is produced, boosting the s-process. This changes deeply the current view on how to interpret the presence of some of
these s-process elements in very old stellar systems, whichacquired their present bulk chemical composition at such
an early time in the history of the Universe that only massivestars had time to contribute to their initial composition.
However, the classical models of massive stars (with no rotation) produce a too weak s-process for accounting for
the observed values. With rotation, metal-poor massive star models can produce s-process elements in much larger
amounts than previously anticipated and they may explain the values of s-process elements observed in one of the
oldest globular clusters (Chiappini et al. [5]). But of course to set on more quantitative grounds this conclusion, more
accurate nuclear reaction rates are needed, in particular,the knowledge of the ratio of17O(α, γ)-channel with respect
to the17O(α, n)-channel has to be improved.

Typically, when rates for17O(α, γ)21Ne and17O(α, n)20Ne from respectively Caughlan & Fowler [3] and NACRE
are used, at typical He-burning temperatures (between 250 and 350× 106 K), the (α, n)/(α, γ) ratios are between 7



and 17. This may appear already as a serious advantage for theneutron releasing reaction but actually with such ratios,
the (α, γ) remain quite important because the neutrons can be recaptured by16O! It happens that for the poisoning
effect of16O to disappear completely, a ratio about 1000-times lower should be obtained. Descouvemont [8] proposed
a 1000-times lower (α, γ)-channel with respect to the (α, n)-channel. If this result holds true this would have important
consequences for the s-process element production. Some quantitative examples are given in Frischknecht et al. [10].

24Mg(p, γ)25Al and the Mg-Al anticorrelation in globular clusters

Globular clusters, in contrast with previous common wisdom, were not formed from one and unique gigantic
starburst more than 10 Gy ago. Instead, it appears that thesesystems hosted more than one star-formation episodes (see
the review by Gratton et al. [11]). Let alone, this fact is notso much unexpected in view of the relatively large mass of
these objects. What is however quite puzzling is the fact that the chemical composition of stars of the generations that
succeeded to the first one present very strange chemical patterns. Actually their chemical patterns reflect mainly, if not
only, the expected pattern associated to hydrogen burning regions. How did the stars manage to expel only H-burning
products? Different scenarios have been proposed (see the above review). One of the difficulty of many of these models
however is to reproduce the correct extent of the Mg-Al anticorrelation. It appears that the use of the rate by Powell et
al (1999) for the reaction24Mg(p, γ)25Al produces a too small destruction of Mg and of course a too small production
of Al to reproduce the observed values. Thus, the question iswhether this rate could be underestimated (see discussion
in Decressin et al. [7]).

Many more examples could have been chosen to illustrate the importance of having a better knowledge of nuclear
physics. There is no doubt that refining the estimates of somekey nuclear reaction rates to within smaller error bars
than presently available will allow to make great progresses in many areas of astrophysics. The chemical abundances
of the interstellar medium, reflected at the surface of non-evolved low mass stars, represent an archive of past star
forming events and thus an access to the histories of clusters and galaxies.
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