

LECTURE #3: EXPLOSIVE BURNING

CHRISTIAN ILIADIS

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

"Onion Shell" Structure of Massive Star: Instant Before Core Collapse

- no other nuclear energy source is available to core
- core is in NSE, with T=10¹⁰ K and ρ =10¹⁰ g/cm³
- grows in mass; when it reaches 1.4 times solar mass, electron degeneracy pressure is unable to counteract gravity...
- core collapses in free fall...
- when ρ=10¹⁴ g/cm³: nuclei and nucleons feel short-range nuclear force [repulsive at very short distance]
- inner part of core rebounds, producing an outward moving shock wave...

EXPLOSIVE BURNING: SHOCK MOVING THROUGH "ONION" LAYERS

COMPLETE EXPLOSIVE SI BURNING T=6.5 GK

outgoing shock wave heats inner ²⁸Si layer of star to high T and ρ ; matter approaches NSE: composition entirely determined by values of T, ρ , and neutron excess η

- at T=6 GK, NSE is quickly established
- since neutron excess is small, NSE favors ⁵⁶Ni as main constituent
- complete conversion of ²⁸Si to ⁵⁶Ni ["complete explosive silicon burning"]

COMPLETE EXPLOSIVE SI BURNING

fate of matter after shock wave passes through layer depends on expansion time scale τ , and density of n, p, α abundances when reactions start to fall out of equilibrium at a the "freezeout" temperature

if ρ large and τ slow: NSE is terminated by lack of light particles ("normal freeze-out"): ejected abundances are close to those derived from NSE [mainly ⁵⁶Ni since $\eta \approx 0.003$]

if ρ small and τ fast: NSE is terminated by excess of α -particles (" α -rich freeze-out"): ejected abundances change somewhat from NSE [still mainly ⁵⁶Ni for $\eta \approx 0.003$; also ⁴⁴Ti]

8

6

Peak temperature (GK)

4

NeC

2

T=6.5 GK

10¹⁰

10⁴∟ 10

COMPLETE EXPLOSIVE SI BURNING

T=6.5 GK

CORE COLLAPSE SUPERNOVA OBSERVATIONS

http://cococubed.asu.edu/images/ti44_co60

SN1987A: m(⁵⁶Ni)=0.07±0.01 M_{sol}

50

Energy (keV)

80

Hard-X-ray emission lines from the decay of ⁴⁴Ti in the remnant of supernova 1987A

30

S. A. Grebenev, A. A. Lutovinov, S. S. Tsygankov & C. Winkler

Affiliations | Contributions | Corresponding author

Nature 490, 373–375 (18 October 2012) | doi:10.1038/nature11473 Received 23 November 2011 | Accepted 13 August 2012 | Published online 17 October 2012

INCOMPLETE EXPLOSIVE SI BURNING T=4.8 GK

outgoing shock wave heats outer ²⁸Si layer of star to high T and ρ ; matter approaches QSE [since temperature is smaller]

- two quasi-equilibrium clusters form: one built around ²⁸Si [highest B/A in this mass region], the other one built around iron peak [even higher B/A]
- situation resembles hydrostatic silicon burning
- if enough time would be available, all silicon would be destroyed and matter would reach NSE
- however, expansion causes freeze-out before this can happen
- since a significant fraction of ²⁸Si remains:
 "incomplete explosive silicon burning"

main nucleosynthesis products: ⁵⁶Ni, ²⁸Si, intermediate-mass elements

EXPLOSIVE O BURNING T=3.8 GK

- next layer reached by shock is composed of ¹⁶O
- process similar to incomplete silicon burning: ¹⁶O fuel is depleted via ¹⁶O+¹⁶O, ¹⁶O(γ,α)¹²C, etc., giving rise to two QSE clusters in the mass regions of Si and Fe
- however, temperature is lower and thus less matter is converted to the Fe peak and much more material remains locked in the silicon region

EXPLOSIVE O BURNING

T=3.8 GK

most abundant nuclides after freeze-out: ²⁸Si, ³²S, ³⁶Ar, ⁴⁰Ca (" α -elements") and some iron peak species

EXPLOSIVE NeC BURNING

 abundance of a given species depends on initial composition and detailed reaction rates

• next layer reached by shock is composed of ¹⁶O, ²⁰Ne, ¹²C

T=2.5 GK

- thus ²⁰Ne, and to a lesser extent ¹²C, will burn explosively
- but T is too small for establishing QSE and the forward and reverse nuclear reactions operate far from equilibrium

EXPLOSIVE NeC BURNING

T=2.5 GK

EXPLOSIVE BURNING: SHOCK MOVING THROUGH "ONION" LAYERS

about 1 hour after core collapse, the shock reaches stellar surface

J. Jose & C. Iliadis, "The Unfinished Quest for the Origin of the Elements", Rep. Prog. Phys. 74, 096901 (2011)