

LECTURE #2: HYDROSTATIC STELLAR BURNING

CHRISTIAN ILIADIS

HE UNIVERSITY NORTH CAROLINA CHAPEL HILL

NUCLEAR BURNING STAGES OF MASSIVE STARS

- reactions with smallest Coulomb barrier proceed first, stabilizing star
- when nuclear fuel is consumed, star contracts gravitationally, T increases
- next available nuclear fuel (ashes of previous stage) burns, stabilizing star

Woosley, Heger & Weaver, Rev. Mod. Phys. 74, 1015 (2002)

HYDROGEN BURNING I

Sun (T=15.6 MK), stellar cores (T=8-55 MK), shell of AGB stars (T=45-140 MK)

pp2 chain

 $p(p,e^+\nu)d$

 $d(p,\gamma)^{3}He$

 3 He $(\alpha, \gamma)^{7}$ Be

 $^{7}Be(e^{-},\nu)^{7}Li$

 $^{7}Li(p,\alpha)\alpha$

pp3 chain

 $p(p,e^+\nu)d$ $d(p,\gamma)^{3}He$ $^{3}He(\alpha,\gamma)^{7}Be$ $^{7}Be(p,\gamma)^{8}B$ $^{8}B(\beta^+\nu)^{8}Be$ $^{8}Be(\alpha)\alpha$

Ray Davis (1914-2006) Nobel Prize 2002

- 4H→⁴He releases 26.7 MeV
- reactions are non-resonant at low energies
- p+p [slowest reaction] has not been measured
- d+p, ${}^{3}\text{He}+{}^{3}\text{He}$, ${}^{3}\text{He}+\alpha$ have been measured by LUNA collaboration
- 90% of Sun's energy produced by pp1 chain
- neutrinos provide direct evidence that nuclear reactions occur
- ⁸B neutrinos discovered at Homestake [0.02%]; solar neutrino problem
- Super-Kamiokande/SNO experiments; neutrino oscillations [Takaaki Kajita & Art McDonald, Nobel Prize 2015];

first p+p neutrino detection: BOREXINO (2014)

HYDROGEN BURNING II

Sun (T=15.6 MK), stellar cores (T=8-55 MK), shell of AGB stars (T=45-140 MK)

10

0.01

Temperature (GK)

0.1

• ¹² C and ¹⁶ C) nuclei act a	as catalysts
---------------------------------------	----------------	--------------

- branchings: (p,α) stronger than (p,γ)
- ¹⁴N(p,γ)¹⁵O slowest reaction in CNO1 has been measured by LUNA and LENA

 solar: ¹³C/¹²C=0.01; CNO1: ¹³C/¹²C=0.25 ("steady state")

• T>20 MK: CNO1 faster than pp1

CNO1	CNO2	CNO3	CNO4
¹² C(p,γ) ¹³ N	¹⁴ N(p,γ) ¹⁵ O	¹⁵ N(p,γ) ¹⁶ O	¹⁶ Ο(p, γ) ¹⁷ F
¹³ N(β ⁺ ν) ¹³ C	¹⁵ Ο(β ⁺ ν) ¹⁵ Ν	¹⁶ O(p,γ) ¹⁷ F	¹⁷ F(β ⁺ ν) ¹⁷ O
¹³ C(p,γ) ¹⁴ N	¹⁵ N(p,γ) ¹⁶ O	¹⁷ F(β ⁺ ν) ¹⁷ O	¹⁷ Ο(p,γ) ¹⁸ F
¹⁴ N(p,γ) ¹⁵ O	¹⁶ Ο(p,γ) ¹⁷ F	¹⁷ O(p,γ) ¹⁸ F	¹⁸ F(β ⁺ ν) ¹⁸ O
¹⁵ Ο(β ⁺ ν) ¹⁵ Ν	¹⁷ F(β ⁺ ν) ¹⁷ O	¹⁸ F(β ⁺ ν) ¹⁸ O	¹⁸ O(p,γ) ¹⁹ F
¹⁵ N(p,α) ¹² C	¹⁷ O(p,α) ¹⁴ N	¹⁸ O(p,α) ¹⁵ N	¹⁹ F(p,α) ¹⁶ O

A CLOSER LOOK AT ${}^{12}C(\alpha,\gamma){}^{16}O$

determines:

- C/O ratio at end of He burning
- advanced burning stages
- structure of pre-supernova star
- evolution in low-mass stars

Plag, Reifahrt, Heil, Kaeppeler, Rupp, Voss & Wisshak, PRC 86, 015805 (2012)

CARBON BURNING

core (T=0.6-1.0 GK)

- Primary reactions: ${}^{12}C({}^{12}C,p){}^{23}Na$ (Q=2.2 MeV) ${}^{12}C({}^{12}C,\alpha){}^{20}Ne$ (Q=4.6 MeV) ${}^{12}C({}^{12}C,n){}^{23}Mg$ (Q=-2.6 MeV
 - + several secondary reactions
- ashes: ¹⁶O, ²⁰Ne
- last core burning stage for evolution of intermediate-mass stars [9-11 M_{sol}]; they eventually become "ONe White Dwarfs"

OXYGEN BURNING

core (T=1.5-2.7 GK)

Primary reactions:
¹⁶O(¹⁶O,p)³¹P
¹⁶O(¹⁶O,α)²⁸Si

+ several secondary reactions

• ashes: ²⁸Si, ³²S

REACTION RATE EQUILIBRIA

$$\lambda_1(0) = \rho \frac{X_1}{M_1} N_A \langle \sigma \mathbf{v} \rangle_{01}$$

reciprocity theorem

$$\frac{\sigma_{23\to01}}{\sigma_{01\to23}} = \frac{(2j_0+1)(2j_1+1)}{(2j_2+1)(2j_3+1)} \frac{m_{01}E_{01}}{m_{23}E_{23}} \frac{(1+\delta_{23})}{(1+\delta_{01})}$$

Saha statistical equation

$$r = r_{01 \to 23} - r_{23 \to 01} = \frac{N_0 N_1 \langle \sigma v \rangle_{01 \to 23}}{(1 + \delta_{01})} - \frac{N_2 N_3 \langle \sigma v \rangle_{23 \to 0}}{(1 + \delta_{23})} = 0$$

EXPERIMENTAL BINDING ENERGY PER NUCLEON

NUCLEAR STATISTICAL EQUILIBRIUM: GENERAL IDEAS

as ²⁸Si disappears in the core at the end of Si burning, T increases, until all non-equilibrated reactions come into equilibrium [last reaction: 3α reaction]

one large equilibrium cluster stretches from p, n, α to Fe peak: "Nuclear Statistical Equilibrium" (NSE)

abundance of each nuclide can be calculated from repeated application of Saha equation:

For species
$${}^{A}_{\pi}Y_{\nu}$$
: $N_{Y} = N_{p}^{\pi}N_{n}^{\nu}\frac{1}{\theta^{A-1}}\left(\frac{M_{Y}}{M_{p}^{\pi}M_{n}^{\nu}}\right)^{3/2}\frac{g_{Y}}{2^{A}}G_{Y}^{\text{norm}}e^{B(Y)/kT}$
 $\theta \equiv (2\pi m_{u}kT/h^{2})^{3/2}$

$$\eta = \sum_{i} \frac{(N_i - Z_i)}{M_i} X_i$$

 N_i, Z_i : number of neutrons, protons [bound or free] M_i, X_i : atomic mass, mass fraction represents number of excess neutrons per nucleon (can only change as result of weak interactions!)

in NSE, abundance of any nuclide is determined by: temperature, density, neutron excess

NUCLEAR STATISTICAL EQUILIBRIUM: INTERESTING PROPERTIES

assume plasma consists only of:

⁵⁶Fe η=(N-Z)/M=(30-26)/56=0.07 ⁵⁶Ni η=(N-Z)/M=(28-28)/56=0 ⁵⁴Fe η=(N-Z)/M=(28-26)/54=0.04

η needs to be monitored very carefully at each of the previous burning stages![stellar weak interaction rates need to be known]

assume first that $\eta=0$ when NSE is established and Si burning has mainly produced ⁵⁶Ni (N=Z=28) in the Fe peak besides ⁴He, p, n...

at ρ =const and T rising: increasing fraction of composition resides in light particles (p, n, α)

Seitenzahl, Timmes et al., ApJL 685, 129 (2008)

WHY, AGAIN, IS ⁵⁶Ni FAVORED AT η =0?

experimental binding energies per nucleon

Onion Shell Structure: Massive Star at Instant Before Core Collapse

J. Jose & C. Iliadis, "The Unfinished Quest for the Origin of the Elements", Rep. Prog. Phys. 74, 096901 (2011)