

LECTURE #1: NUCLEAR AND THERMONUCLEAR REACTIONS

CHRISTIAN ILIADIS

HE UNIVERSITY f North Carolina (Chapel Hill

NUCLEAR REACTIONS

Definition of cross section:

Unit: 1 barn=10⁻²⁸ m²

Example: $p + p \rightarrow d + e^+ + v$ (first step of pp chain)

 σ_{theo} =8x10⁻⁴⁸ cm² at E_{lab}=1 MeV [E_{cm}=0.5 MeV]

1 ampere (A) proton beam ($6x10^{18}$ p/s) on dense proton target (10^{20} p/cm²)

gives only 1 reaction in 6 years of measurement!

NUCLEAR CROSS SECTIONS

(i) why does the cross section fall drastically at low energies?

(ii) where is the peak in the cross section coming from?

SIMPLE 1D EXAMPLE

$$\frac{d^2u}{dr^2} + \hat{k}^2 u = 0 \qquad \qquad \lambda = \frac{2\pi}{\hat{k}}$$

transmission coefficient:
$$\hat{T} = \frac{K}{k} \frac{|B|^2}{|G|^2} \approx e^{-(2/\hbar)} \sqrt{2m(V_1 - E)} (R_1 - R_0)$$

(after lengthy algebra, and for the limit of low E)

"quantum tunneling"

quantum tunneling is the reason for the strong drop in cross section at low energies!

BACK TO SIMPLE POTENTIAL, BUT NOW 3D

$$V(\mathbf{r})$$

$$V(\mathbf{r})$$

$$V_{1}$$

$$E + V_{0}$$

$$R_{0} - R_{1}$$

wave function solutions: $\begin{aligned}
\hat{k}_{I}^{2} &= K^{2} = \frac{2m}{\hbar^{2}} \left(E + V_{0} \right) \\
u_{II} &= Ce^{-\kappa r} + De^{\kappa r} \\
u_{III} &= F' \sin(kr + \delta_{0}) \\
\hat{k}_{II}^{2} &= k^{2} = i^{2} \frac{2m}{\hbar^{2}} \left(V_{1} - E \right) \\
\hat{k}_{III}^{2} &= k^{2} = \frac{2m}{\hbar^{2}} E
\end{aligned}$

continuity condition...

wave intensity in interior region:(after very tedious algebra)

$$\frac{|A'|^2}{|F'|^2} = \left\{ \sin^2(KR_0) + \left(\frac{K}{k}\right)^2 \cos^2(KR_0) + \sin^2(KR_0) \sinh^2(\kappa\Delta) \left[1 + \left(\frac{\kappa}{k}\right)^2\right] + \cos^2(KR_0) \sinh^2(\kappa\Delta) \left[\left(\frac{K}{\kappa}\right)^2 + \left(\frac{K}{k}\right)^2\right] + \sin(KR_0) \cos(KR_0) \sinh(2\kappa\Delta) \left[\left(\frac{K}{\kappa}\right) + \left(\frac{K}{\kappa}\right)\left(\frac{\kappa}{k}\right)^2\right] \right\}^{-1} \right\}$$

$$\lambda = \frac{2\pi}{\hat{k}}$$

COMPARISON TO OBSERVATION

[change of potential depth V₀: changes wavelength in interior region]

"resonance phenomenon"

a resonance results from favorable wave function matching conditions at the boundaries!

TRANSMISSION THROUGH COULOMB BARRIER

COMPARISON: S-FACTORS AND CROSS SECTIONS

used for: - for fitting data to deduce resonance properties

- for "narrow-resonance" thermonuclear reaction rates
- for extrapolating cross sections when no measurements exist
- for experimental yields when resonance cannot be resolved

THERMONUCLEAR REACTIONS

for a stellar plasma: kinetic energy for reaction derives from thermal motion:

"thermonuclear reaction"

for a reaction 0 + 1 \rightarrow 2 + 3 we find from the definition of σ (see earlier) a "reaction rate":

$$r_{01} = N_0 N_1 \int_0^\infty v P(v) \sigma(v) \, dv \equiv N_0 N_1 \langle \sigma v \rangle_{01}$$

for a Maxwell-Boltzmann distribution:

$$\langle \sigma v \rangle_{01} = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E \frac{\sigma(E)}{\sigma(E)} e^{-E/kT} dE$$

INTERPLAY OF REACTIONS IN PLASMA

$$\frac{d(N_{25}_{A1})}{dt} = N_{H}N_{24}_{Mg}\langle \sigma v \rangle_{24}_{Mg(p,\gamma)} + N_{4}_{He}N_{22}_{Mg}\langle \sigma v \rangle_{22}_{Mg(\alpha,p)} \\ + N_{25}_{Si}\lambda_{25}_{Si(\beta^{+}\nu)} + N_{26}_{Si}\lambda_{26}_{Si(\gamma,p)} + \dots \\ - N_{H}N_{25}_{A1}\langle \sigma v \rangle_{25}_{A1(p,\gamma)} - N_{4}_{He}N_{25}_{A1}\langle \sigma v \rangle_{25}_{A1(\alpha,p)} \\ - N_{25}_{A1}\lambda_{25}_{A1(\beta^{+}\nu)} - N_{25}_{A1}\lambda_{25}_{A1(\gamma,p)} - \dots \end{cases} \right\}$$
destruction

system of coupled differential equations: "nuclear reaction network"

solved numerically, see:

- Arnett, "Supernovae and Nucleosynthesis", Princeton University Press (1996)
- Longland et al., Astron. Astrophys. 563, A67 (2014)

SPECIAL CASE #1: NON-RESONANT S-FACTOR (smoothly varying)

$$\sigma(E) \equiv \frac{1}{E} e^{-2\pi \eta}$$

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \sigma(E) e^{-E/kT} dE$$

$$= \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} S_0 \int_0^\infty e^{-2\pi \eta} e^{-E/kT} dE$$
"Gamow peak"
represents the energy range over which most nuclear reactions occur in a plasma!

location and 1/e width of Gamow peak:

$$E_{0} = \left[\left(\frac{\pi}{\hbar}\right)^{2} \left(Z_{0}Z_{1} e^{2}\right)^{2} \left(\frac{m_{01}}{2}\right) (kT)^{2} \right]^{1/3}$$

= 0.1220 $\left(Z_{0}^{2}Z_{1}^{2} \frac{M_{0}M_{1}}{M_{0} + M_{1}} T_{9}^{2}\right)^{1/3}$ (MeV)
$$\Delta = \frac{4}{\sqrt{3}} \sqrt{E_{0}kT} = 0.2368 \left(Z_{0}^{2}Z_{1}^{2} \frac{M_{0}M_{1}}{M_{0} + M_{1}} T_{9}^{5}\right)^{1/6}$$
 (MeV)

GAMOW PEAKS

$$e^{-2\pi\eta} e^{-E/kT}$$

$$= \exp\left(-\frac{2\pi}{\hbar}\sqrt{\frac{m_{01}}{2E}}Z_0Z_1e^2 - \frac{E}{kT}\right)$$

important aspects:

- (i) Gamow peak shifts to higher energy for increasing charges Z_p and Z_t
- (ii) at same time, area under Gamow peak decreases drastically

conclusion: for a mixture of different nuclei in a plasma, those reactions with the smallest Coulomb barrier produce most of the energy and are consumed most rapidly [→ stellar burning stages]

SPECIAL CASE #2: NARROW RESONANCES (Γ_i const over total Γ)

Breit-Wigner formula (energy-independent partial widths)

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \,\sigma(E) \, e^{-E/kT} \, dE$$

$$= N_A \frac{\sqrt{2\pi}\hbar^2}{(m_{01}kT)^{3/2}} e^{-\frac{E_r}{kT}} \omega \frac{\Gamma_a \Gamma_b}{\Gamma} 2\pi$$

resonance energy needs to be known rather precisely

• takes into account only rate contribution at E_r

"resonance strength" $\omega\gamma$:

- proportional to area under narrow resonance curve
- \bullet energy-dependence of σ not important

SPECIAL CASE #3: BROAD RESONANCES

Breit-Wigner formula (energy-dependent partial widths)

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \,\sigma(E) \, e^{-E/kT} \, dE$$

rate can be found from numerical integration

there are two contributions to the rate: (i) from "narrow resonance" at E_r (ii) from tail of broad resonance

TOTAL REACTION RATE

need to consider:

- non-resonant processes
- narrow resonances
- broad resonances
- subthreshold resonances
- interferences
- continuum

every nuclear reaction represents a special case !

