Nuclear and astrophysics aspects of the heavy elements nucleosynthesis

S. Goriely Institut d'Astronomie et d'Astrophysique – Université Libre de Bruxelles

- Introduction
- The s-process nucleosynthesis
- The r-process nucleosynthesis
- The p-process nucleosynthesis

For each process

- Some astrophysical aspects
- Some nuclear physics aspects
- Some observational aspects

The different burning phases responsible for the nucleosynthesis of light elements

12C	He	³² S	O, EO	49Ti	ESi ^c , EHe ^c
13C	H, EH	³³ S	EO	⁵⁰ Ti	nnse
14 N	н	34S	O, EO	50V	ENe, nnse
15 N	EH¢	³⁶ S	EC, Ne, ENe	51V	ESic
160	He	³⁵ Cl	EO, EHe, ENe	⁵⁰ Cr	EO, ESi
170	EH, H	37Cl	EO, C, He	⁵² Cr	ESic
180	H, EH, He	³⁶ Ar	EO, ESi	⁵³ Cr	ESic
19F	EH, He(?)	38Ar	O, EO	54Cr	nnse
²⁰ Ne	C	40 Ar	?, Ne, C	⁵⁵ Mn	ESi ^c , nse ^c
²¹ Ne	C, ENe	³⁹ K	EO, EHe	54Fe	ESi, EO
²² Ne	He	40K	IIe, EHe, Ne, ENe	⁵⁶ Fe	ESi ^c , nse, anse ^c
²² Na	EH, ENe	41K	EO¢	⁵⁷ Fe	nse ^c , ESi ^c , anse ^c
23 Na	C, Ne, ENe	40Ca	EO, ESi	⁵⁸ Fe	He, nnse, C, ENe
²⁴ Mg	Ne, ENe	⁴² Ca	EO, O	⁵⁹ Co	anse ^c , C
²⁵ Mg	Ne, ENe, C	⁴³ Ca	Elle, C	58 Ni	anse, ESi
²⁶ Mg	Ne, ENe, C	44Ca	EHe	⁶⁰ Ni	anse ^c
26 AI	ENe, EH	46Ca	EC, C, Ne, ENe	⁶¹ Ni	anse ^c , ENe, C, EHe
27 AI	Ne, ENe	48Ca	nnse	⁶² Ni	anse ^c , ENe, O
28Si	O, EO	45Sc	Elle, Ne, ENe	⁶⁴ Ni	ENe
²⁹ Si	Ne, ENe, EC	46Ti	EO	⁶³ Cu	ENe, C
³⁰ Si	Ne, ENe, EO	47 Ti	EHec	⁶⁵ Cu	ENe
31P	Ne, ENe	48Ti	ESic	⁶⁴ Zn	EHe ^c , anse ^c

from ¹²C to Fe-group nuclei

H = Hydrostatic H-burning EH = Explosive H-burning He = Hydrostatic He-burning EHe = Explosive He-burning C = Hydrostatic C-burning EC = Explosive C-burning Ne = Hydrostatic Ne-burning ENe = Explosive Ne-burning O = Hydrostatic O-burning EO = Explosive O-burning Si = Hydrostatic Si-burning ESi = Explosive Si-burning NSE = Nuclear Statistical Equilibrium

"Most important process first, additional (secondary) contributions follow.

¹II = Hydrogen burning; EH = explosive Hydrogen burning, novae.

- He = hydrostatic Helium burning; EHe = explosive Helium burning (esp. Type I SN)
- C = hydrostatic Carbon burning; EC = explosive Carbon burning.
- Ne = hydrostatic Neon burning; ENe = explosive Neon burning.
- 0 = hydrostatic Oxygen burning; EO = explosive Oxygen burning.
- Si = hydrostatic Silicon burning; ESi = explosive Silicon burning.
- nse = nuclear statistical equilibrium (NSE).
- anse = α -rich freeze out of NSE.
- anse = neutron-rich NSE.

'Radioactive progenitor.

The production of elements heavier than iron

The concept of synthesis by neutron captures

 $\tau_p(A>56)$ & $\tau_{\alpha}(A>56)$ >>> typical evolution lifetime of a star

- \rightarrow Charged-particle captures are inefficient to produce the bulk galactic A > 56 nuclei
- ----- Consider NEUTRONS instead !
 - No coulomb barrier
 - Natural explanation for the peaks observed in the solar system abundances at neutron magic numbers *N*=50, 82 and 126

Decomposition of the solar abundances

Decomposition of the solar abundances

Slow neutron-capture process: $\tau_{\beta} \ll \tau_{n}$

Rapid neutron-capture process: $\tau_{\beta} \gg \tau_n$

 τ_n = lifetime against neutron capture τ_β = lifetime against β^- decay

 $N \rightarrow$

Slow neutron-capture process: $\tau_{\beta} \ll \tau_n$ $N_n \sim 10^7 \cdot 10^{11} \text{ cm}^{-3}$ $T \sim 1 \cdot 3 \ 10^8 \text{K}$ $t_{irr} \sim 10 \cdot 10^4 \text{yr}$ $\tau_\beta = \text{lifetime against } \beta^- \text{ decay}$

 τ_n = lifetime against neutron capture

Slow neutron-capture process: $\tau_{\beta} << \tau_{n}$ $N_{n} \sim 10^{7} - 10^{11} \text{ cm}^{-3}$ $T \sim 1 - 3 \ 10^{8} \text{K}$ $t_{irr} \sim 10 - 10^{4} \text{yr}$ Rapid neutron-capture process: $\tau_{\beta} >> \tau_{n}$ $N_{n} >> 10^{20} \text{ cm}^{-3}$ $T \sim 10^{9} \text{K}$ $t_{irr} \sim 1 \text{s}$

 τ_n = lifetime against neutron capture τ_β = lifetime against β^- decay

N →

Closed shells at magic numbers N=50, 82, 126 --> slow n-capture

The signature of nuclear properties in the double-peak pattern of the solar abundance distribution

The nature of the p-process nucleosynthesis

- 1. Production of heavy seed nuclei (s- and r-processes) in previous star generations. In particular the s-process during core He-burning leading to an increase of $70 \le A \le 90$ s-elements.
- 2. Heating of the s-enriched and r-seeds at a temperature of $T=2-3\ 10^9$ K for a few seconds leading to the photodissociation of the s- and r-nuclei into p-nuclei by (γ,n) , (γ,p) and (γ,α) reactions. In some proton-rich environments, proton captures can be envisioned as contributing to the production of p-nuclei (but generally protons are absent in these environments).

p-nuclei are about 10 to 100 times less abundant than s and r-nuclei in the solar system

The various nucleosynthesis processes

The s-process nucleosynthesis

The astrophysical sites of the s-process nucleosynthesis

Two major neutron sources can easily be identified: ${}^{13}C(\alpha,n){}^{16}O \& {}^{22}Ne(\alpha,n){}^{25}Mg$

Still it requires

• a large seed abundance of 13 C or 22 Ne (but also He)

• thermodynamic conditions favourable to the He-burning

• The ¹³C source burns rapidly ($T \sim 10^8$ K) but ¹³C is not abundantly produced during Hburning (CNO cycle leads to an equilibrium abundance of about 10⁻⁴ – 10⁻⁵) and ¹⁴N poison is most of the time present !

• The ²²Ne source can be relatively abundant during He-burning (¹⁴N is highly produced by CNO cycle), but ²²Ne(α ,n) requires high temperatures (T_8 >3) at which the 3 α reaction may totally exhaust He.

The s-process in massive stars: the weak component

¹⁴N seed nuclei is transformed into ²²Ne by ¹⁴N(α , γ)¹⁸F(β ⁺)¹⁸O(α , γ)²²Ne

Pre-existing Fe (and other nuclei) serve as seed for a secondary s-process: the lower the metallicity, the lower the Fe content, the less heavy nuclei are produced (in absolute terms)

Impact of the star mass: the s-process in the convective He-burning core for 4 stellar models

Impact of the stellar metallicity:

the s-process in the convective He-burning core for 2 different metallicities

25 M_o star with $Z=Z_o$ (open squares) and $Z=0.1Z_o$ (black squares).

The s-abundance distribution depends on the relative abundances of

- (i) the neutrons produced by ${}^{22}Ne(\alpha,n){}^{25}Mg$,
- (ii) the iron peak elements present initially in the He core and
- (iii) the lighter nuclides acting as neutron poisons.

The s-nuclide enhancement remains limited to $A \le 90$ and scales with Z (secondary process).

S-process in AGB stars: the main component

Low- and Intermediate mass stars: $1 \le M [M_0] \le 10$ enrichment in $90 \le A \le 208$

S-process in TP-AGB stars: *the main and strong components*

The AGB phase of low- and intermediate-mass stars (1 $M_0 \le M \le 9 M_0$)

The most popular model for the s-process in AGB stars the partial mixing of protons at the time of the 3d DUP

Modeling of the Partial Mixing of Protons

I. The standard "¹³C-pocket"

'Standard' H-profile leading to the formation of a 'standard' ¹³C-profile, in such a way that "¹³C-pocket mass and profile constrained to reproduce the main component and to match spectroscopic observations of s-enhanced stars"

The instantaneous (mechanism-independent) partial mixing of protons Exponentially decreasing H-profile from the Envelope ($X_p=0.7$) down to ~ 10⁻⁶

Mixing of protons in C-rich layers: $X(^{12}C)\approx 0.2$ $Mixing of protons in C-rich layers: <math>X(^{12}C)\approx 0.2$ $X_p=0.70$ $X_p=10^{-2}$ $X_p=10^{-2}$ $X_p=10^{-4}$ $X_p=10^{-4}$ $X_p=10^{-6}$ $X_p=0$ 10^{1} 10^{1} $X_p=10^{-6}$ $X_p=0$ 10^{-1} $X(^{12}C)\sim 0.2-0.5$ $X(^{12}C)\sim 0$

Extent of the PMP zone: typically about 5-10% of $M_{pulse}i.e M_{PMP}$ a few 10⁻⁴ M_o in order to reproduce globally the observed surface abundances [s/Fe]>1

The overshoot model

Depth-dependent diffusion below the convective envelope based on 2D simulations of radiative hydrodynamics of time-dependent compressible convection
D_{ov} = D₀ exp(-2z/f_{over} H_p) (H_p pressure scale height; f_{over} free parameter)
Fast diffusion of protons on *short* timescales (s-process region: D ≈ 10⁶ s/cm², τ≈1yr)

The nucleosynthesis related to the partial mixing of protons

The overshoot model $D_{over} = 10^{14} \longrightarrow 10^3 \text{ s/cm}^2$

Fast diffusion of protons (s-process region: $D \approx 10^6$ s/cm², $\tau \approx 1$ yr) on short timescales ($D_{over} > 0$ for 10-100 yr)

The rotationally induced mixing

Extra mixing due to differential rotation between a slow rotating envelope and a fast rotating core (large angular momentum jump at the H/C interface)

Slow diffusion on *long* timescales ($D \approx 10^5$ s/cm² for more than 10^3 yr)

The nucleosynthesis related to the partial mixing of protons Abundances at the end of the radiative interpulse phase (¹³C pocket at the end of the 3DUP phase) $Y_{p}^{mix} / Y(^{12}C)$ 10^{-1} 10⁻² p 10⁻³ 10^{0} 10¹ $X_p = 0.70$ 10⁰ ^{14}N $X_p = 10^{-2}$ 12C 10⁻¹ PMP $X_{p} = 10^{-4}$ ^{16}O Mass fractions X ¹⁸O 10⁻² $X_p = 10^{-6}$ ¹⁵N ¹³C-pocket 10⁻³ $X_p = 0$ ¹⁷O 10-4 C-rich 10⁻⁵ Convective ¹⁹F layers envelope 10-6 10^{-3} 10⁻⁵ 10^{-4} 10^{-2} 10⁻¹ X ^{mix} р

Primary production of ¹³C and ¹⁴N: ¹²C(p, γ)¹³N(β +)¹³C(p, γ)¹⁴N followed by ¹³C(α ,n)¹⁶O & ¹⁴N(n,p)¹⁴C(α , γ)¹⁸O(p, α)¹⁵N and later in the pulse ¹⁵N(α , γ)¹⁹F

An s-process-rich nucleosynthesis

Primary production of ¹³C *without* large production of ¹⁴N: ${}^{12}C(p,\gamma){}^{13}N(\beta^+){}^{13}C$

¹³C(α ,n)¹⁶O & the s-process nucleosynthesis ⁵⁶Fe(n, γ)⁵⁷Fe(n, γ) ...

The resulting s-process in the overshoot/PMP model

The s-process during the radiative interpulse phase may be followed by some convective s-process in the thermal pulse

Impact of the convective pulse on nucleosynthesis

M=3M_o, Z=0.001, 20th pulse : T_p^{bot} =3.2 10⁸K \rightarrow imprint of the *T*-effect on the branching nuclei !

Nuclear physics of relevance to the sprocess nucleosynthesis

n-source: ${}^{13}C(\alpha,n){}^{16}O; {}^{22}Ne(\alpha,n){}^{25}Mg$

n-captures: ~ 80% known experimentally ($E_n \sim 10-30$ keV), more being measured

- at nToF: ^{90,91}Zr, ¹³⁹La, ¹⁵¹Sm, ^{204,206,207}Pb, ²⁰⁹Bi
- by activation: ⁵⁸Fe, ⁵⁹Co, ⁶⁴Ni, ^{63,65}Cu, ^{79,81}Br, ^{85,87}Rb (Heil 08), ^{74,76}Ge, ⁷⁵As, ^{184,186}W

(Marganiec 09)

- by activation + AMS: ⁴⁰Ca (Dillman 09), ⁶²Ni (Nasser 05)

- on long-lived nuclei: 60 Fe(n, γ) (Uberseder 09), 182 Hf (Vockenhuber 07), 14 C (Reifarth 08), 93 Zr (Tagliente 13)

~ 20% still to be determined theoretically (unstable nuclei) + thermalisation effects & non-thermalisation of given isomers

Beta-decays: *T*- and ρ -dependence of the stellar rate (Takahashi & Yokoi 1987)

Still many branching points affected by ~ factor of 3 due to unknown log ft

Experimental (n, y) rates

About 80% of the radiative neutron capture rates of relevance for the s-process are known experimentally 30 keV Maxwellian-averaged cross sections (T~3.5 10⁸K)

In stellar conditions corresponding to the s-process, the probability for the 3 weak processes (β^{\pm} ,EC) can be quite different, due to

- the contribution of thermally populated excited states to the decay process
- the ionisation leading to large abundance of free electrons and their possible capture by nuclei

- the (partial) degeneracy of electrons in the stellar plasma

The contribution of thermally populated excited states to the decay process

At increasing temperatures, excited states are thermally populated and can contribute to the β -decay process and consequently modify (sometime very significantly) its half-life with respect to the laboratory value.

One example is ⁹⁹Tc, most probably the Tc isotope observed at the surface of AGB stars and produced by the s-process nucleosynthesis at temperatures of a few 10^8 K. In such conditions, the 141 and 181 keV states can be sufficiently populated to contribute to the β -decay and reduce the half-life from the laboratory value of 2.1 10⁵ y to about 10 years at *T*~3 10⁸K.

The decay of thermally populated states can play a significant role if -the ground state β -decay is slow due to spin selection rules (large differences between spin and parities of initial and final states: forbidden transitions)

- the low-lying states can undergo faster β -decays than the ground state

- temperatures are high enough to populate such excited states

β[±]-decay rates are *T*-dependent in stars

A famous example: the bound state β -decay of ¹⁸⁷Re

The β decay of the ¹⁸⁷Re-¹⁸⁷Os pair play an important role in the study of the Re-Os clock $(t_{1/2}(^{187}\text{Re}) \sim 4.2 \ 10^{10}\text{y})$ to estimate the age of the Galaxy

For fully ionised ¹⁸⁷Re⁷⁵⁺, β decay to the continuum is forbidden because the electronic cloud in Os is stronger bound by $\Delta B_e^{\text{tot}} = B_e^{\text{tot}}(\text{Os}) - B_e^{\text{tot}}(\text{Re}) = 15.31 \text{keV}$ than in Re. But

- ¹⁸⁷Os⁷⁶⁺ can decay by capturing an electron from the continuum (¹⁸⁷Os is stable in the lab)

- ¹⁸⁷Re⁷⁵⁺ is unstable against bound state β-decay with the electron bound in the *K* shell with the large *Q*=73keV value. The first ¹⁸⁷Os excited state at 9.75keV can be fed in a non-unique first forbidden transition (*Q*=63.22keV) with the half-life $t_{1/2}$ =14yr, i.e 10⁹ times shorter than for the neutral ¹⁸⁷Re

Terrestrial conditions: neutral ¹⁸⁷Re can only decay (normal β -decay with the electron in the continuum) through the unique, first forbidden transition to the ¹⁸⁷Os ground state: *Q*=2.66 keV and $t_{1/2} \sim 4.2 \ 10^{10}$ y

Experimental confirmation of the bound state β decay of fully stripped ¹⁸⁷Re⁷⁵⁺

S-process enrichment is not only sensitive to the stellar metallicity

The s-process nucleosynthesis is responsible for the other half the elements heavier than iron in the Universe

- How are the neutrons produced in AGB stars (mixing)?
- What is the contributions stemming from intermediate mass AGB stars (M > 4 M_o) ?
- How to explain specific observations, *i.e.* large variation of ¹³C-pockets ?
- (n,γ) and *T*-dependent β -decay rates of branching points ?

The r-process nucleosynthesis

The r-process nucleosynthesis

Rapid neutron capture process characterized by

- $N_n >> 10^{20} \text{ cm}^{-3}$
- $T \sim 10^9 \text{ K}$ (?)
- *t* ~ 1 s

The conditions are such that the $\tau_{\beta} > \tau_{(n,\gamma)} \& \tau_{(\gamma,n)}$

- --> the nuclear flow goes deep into the exotic n-rich region
 - **1.** Astrophysics aspects

• "Realistic" models: Supernova explosion: v-driven wind

Decompression of initially-cold neutron star matter

BUT THE ASTROPHYSICS SITE REMAINS UNKNOWN !!!

- 2. Nuclear Physics aspects:
 - Neutron captures
 - Photodisintegration rates
 - Beta-decays
 - Fission (neutron-induced, β -delayed, spontaneous) rates
 - v-nucleus interaction rates for ~5000 thousands of exotic neutron-rich (experimentally unknown) nuclei

The canonical r-process model

Ν

Т

A purely phenomenological site-independent approach is followed.

The model assumes

If the strong and electromagnetic interactions can occur in a much faster time scale than the weak interactions, an $(n,\gamma)-(\gamma,n)$ equilibrium can be reached for each isotopic chain, before any β -decay can take place. This approximation allows us to neglect the small β -decay rates to the first order, so that the abundance equation for the nucleus (*Z*,*A*) becomes

$$\frac{dN(Z,A)}{dt} = \lambda_{\gamma,n}^{Z,A+1} N(Z,A+1) - N_n \langle \sigma v \rangle_{Z,A} N(Z,A)$$

As soon as the equilibrium is established, dN(Z,A)/dt=0 and the abundance ratio of two isotopes is determined by the ratio of the two nuclear rates:

$$\frac{N(Z,A+1)}{N(Z,A)} = \frac{\langle \sigma v \rangle_{Z,A}}{\lambda_{\gamma,n}^{Z,A+1}} N_n$$

The detailed balance between two inverse reactions can be written in terms of the temperature and the Q-value

$$\frac{\langle \sigma v \rangle_{Z,A}}{\lambda_{\gamma,n}^{Z,A+1}} = \frac{G(Z,A+1)}{2G(Z,A)} \left(\frac{A+1}{A}\right)^{3/2} \left(\frac{2\pi\hbar^2}{m_u kT}\right)^{3/2} e^{\frac{S_n(Z,A+1)}{kT}}$$

where G(Z,A) is the partition function of nucleus (Z,A) at the temperature T, m_u the nuclear mass unit and S_n the neutron separation energy.

This leads to the well known Saha equation relating the abundance ratio of two isotopes in terms of T, N_n and S_n

$$\log \frac{N(Z,A+1)}{N(Z,A)} = \log \frac{G(Z,A+1)}{G(Z,A)} + \log N_n - 34.075 - \frac{3}{2} \log \left(\frac{A+1}{A}T_9\right) + \frac{5.04}{T_9}S_n(Z,A+1)$$

where S_n is expressed in MeV, T_9 in 10⁹K and N_n in cm⁻³

This expression explains why the approximation is called the "waiting point" approximation (WPA). Because of the exponential dependence on S_n , the abundance ratios in each isotopic chain will vary sharply around a particular value of the neutron separation energy.

At maximum, $N(Z,A) \sim N(Z,A+1)$ and the corresponding "*waiting point*" will in turn depend on the thermodynamic conditions (T,N_n) . These peaks for each element constitute what is called the r-process path. For each isotopic chain, the nucleus with maximum abundance (the "waiting point") must then wait for the slower β -decay to take place.

Due to the odd-even effects characterizing the neutron speration energy S_n , the abundance ratio is usually calculated for two even-N isotopes, leading to

$$\frac{1}{2}\log\frac{N(Z,A)}{N(Z,A-2)} = \frac{1}{2}\log\left[\left(\frac{A}{A-2}\right)^{3/2}\frac{G(Z,A)}{G(Z,A-2)}\right] + \log N_n - 34.075 - \frac{3}{2}\log T_9 + \frac{5.04}{T_9}\frac{S_{2n}(Z,A)}{2}$$

where $S_{2n}=M(Z,A-2)+2M_n-M(Z,A)$ the 2-neutron separation energy. Neglecting the partition function ratio, we can express the r-process path as a function of the "astrophysical" factor $S_a(T_9,N_n)$ (in MeV):

$$\frac{S_{2n}(Z,A)}{2} = S_a(T_9,N_n) = \left[34.075 - \log N_n + \frac{3}{2}\log T_9\right] \frac{T_9}{5.04}$$

The relative isotope abundances in each Z-chain can be characterized by the coefficients

$$P(Z,A) = \frac{N(Z,A)}{N(Z)}$$

where the total abundance in the isotopic chain Z is given by

$$N(Z) = \sum_{A} N(Z,A)$$

The abundance flow from one isotopic chain to the next is governed by β -decays and can be described, omitting the fission feedback, by the set of differential equations

$$\frac{dN(Z)}{dt} = N(Z-1)\sum_{A} P(Z-1,A)\lambda_{\beta}^{Z-1,A} - N(Z)\sum_{A} P(Z,A)\lambda_{\beta}^{Z,A}$$

So, within the waiting point approximation, instead of solving a system of differential equations for all nuclei involved, it is sufficient to solve a system which contains only as many equations as the number of *Z*-chains. This feature used to constitute the main reason for the popularity of the WPA.

$$\frac{S_{2n}(Z,A)}{2} = S_a(T_9,N_n) = \left[34.075 - \log N_n + \frac{3}{2}\log T_9\right] \frac{T_9}{5.04}$$

r-process path within an isotopic chain

r-process path from one isotopic chain to the next

r-process path in the region of a magic number

The r-process path for (T_9, N_n) conditions such that $S_a(T_9, N_n) = S_{2n}/2$

OLD approach : 3 solar r-process peaks <--> 3 canonical events (T_9, N_n, τ_{irr}) The canonical model is an interesting training tool, but NOT a realistic model !! Forget about "THE waiting points", "THE r-process path" \rightarrow Nature is more complex

The r-process nucleosynthesis responsible for half the elements heavier than iron in the Universe

one of the still unsolved puzzles in nuclear astrophysics ... the r-process site remains unknown ...

The for-long-favorite r-process site: the v-driven wind in SNII

Nucleosynthesis in the ν -driven wind

Decompression of hot material

n,p at $T_9 \approx 10 \ \rho \sim 10^6 \text{g/cm}^3$ **NSE** ⁴He recombination $\alpha \alpha n^{-9}Be(\alpha,n)$ ¹²C bottleneck (α,γ) & (α,n) 60≤A≤100 seed (n, γ) & (γ ,n) + β -decays r-process

The α +r process in the ν -driven wind

Nuclear flow during the α +r process in the v-driven wind

S=200 Ye=0.40

But the r-process is possible only if the number of neutrons per seed nuclei N_n/N_{seed} is high enough at freeze-out of the α -process

--> the r-process yields are highly sensitive to the entropy *S*, the electron fraction Y_e and the expansion timescales τ_{dvn}

No r-process in realistic hydrodynamical simulations: conditions for a successful r-process (high N_n/N_{seed})

- High entropy wind (hight-*T*, low-ρ): Increase *S*
- Low Y_e wind (n-rich matter): Lower Y_e
- Fast expansion: lower au_{dyn}

 $Y_e \sim 0.3$ $\tau_{dyn} \sim 10 \text{ ms}$

S ~ 500

High sensitivity of the r-process nucleosynthesis to the wind conditions Wind model of Janka & Takahashi (1997):same initial Y_e=0.48

same mass loss rate: $dM/dt=6 \ 10^{-6} \ M_{o}/s$ different mass loss rates (--> τ_{irr}) different entropies same entropies: s_{rad}=200 10^{0} 10^{0} Solar System Solar System - dM/dt = 10⁻⁶ M₂/s s_{rad}=165 10-1 10⁻¹ s_{rad}=185 $- dM/dt = 3 \ 10^{-6} M_{1}/s$ Mass fractions X Mass fractions X 10⁻² 10⁻² 10⁻³ 10-3 10-4 10-4 10-5 10-5 120 200 240 80 120 160 200 240 80 160 А А

Myriad of "pseudo-realistic" astrophysics conditions:

"Standard" (non-exploding) type-II Supernovae ---> no r-process

- electron-capture supernova of intermediate-mass $(9-10M_0)$ stars
- Simulations including relativistic effects
- Massive Proto-Neutron star ($\sim 2M_o$)
- *v*-oscillations at the "right" time with the "right" properties
- Explosion & nucleosynthesis triggered by modified *v*-properties

• etc ...

New hope from asymmetric (bipolar) Jet Supernovae triggered by

- fluid instabilities (standing-accretion-shock instability)
- acoustic power
- rotation and/or magnetic fields

---> Hypernovae, supranovae, collapsars, AIC, γ-ray bursts (long & short), ...

r-process calculations in the ejected wind based on

- post-processing with simplified tracks (S=cst, Y_e =cst, v_r =cst)
- parametrized tracks (for a successful r-process):
 - Newtonian, adiabatic, steady-state wind & breeze solutions
 - \rightarrow analytical profile depending on assumptions made
 - \rightarrow various degrees of sophistication

2D hydrodynamical (successful) explosion of an Electron-Capture Supernova (M_i=9M_o)

(Wanajo, Janka & Müller, 2011)

ECSN ~4% of all stellar core-collapse events

*Y*_{e,min}=0.40 --> Synthesis between Zn and Zr

Nuclear Quasi-Equilibrium with abundant α -particles (no r-process !!)

5

2D/3D MHD jet-like explosion of magnetically driven core-collapse supernovae

(Winteler et al. 2012; Mösta et al. 2014; Nishimura et al. 2015)

Pre-collapse core with **strong** initial magnetic fields and rapid rotation (\rightarrow highly magnetized NS with $B\sim 10^{15}$ G) – rare events $P \sim 0.01-0.1\%$ of all SNe)

 B_0 =10¹¹G→ Synthesis up to A~130 B_0 =10¹²G→ Synthesis up to Th/U

Cold versus Hot r-process

 $(n,\gamma)-(\gamma,n)$ equilibrium depending on the T and N_n at the time of the r-process

Nuclear needs: - neutron capture versus photodisintegration **rates** (non-equil; freeze-out)

- β -decay rates (including delayed processes)
- v-induced (NC, CC) reaction rates
- Fission properties ?

An alternative r-process scenario: the decompression of NS matter

(initial conditions: high-density matter)

Ζ

Systematic study of Neutron-star mergers

(Bauswein, SG, Janka, 2011, 2013, 2014)

Various relativistic simulations for different binary systems :

- NS-NS systems: symmetric (e.g 1.35; 1.45; 1.6; $1.75 M_{o}$)

asymmetric (e.g 1.2–1.5 M_o; 1.2–1.8M_o; 1.35–1–8M_o)

- NS-BH systems: 1.1-1.45M_o NS with 2.3-7M_o BH (and spin α_{BH} =0-0.9)
- 40 different EoS with different stiffness (i.e different NS compactness)
 - → different amounts of mass ejected $M = 10^{-3} - 2 \ 10^{-2} M_{o}$
 - \rightarrow different ejecta velocities
 - → different luminosities of the optical transients 3 14 10⁴¹ erg/s

Systematic study of Neutron-star mergers

BUT *invariably*, more than 95 % of the ejected material is r-process with a distribution very similar to the solar r-abundance distribution (A>140)

Neutron Star Mergers: a (very) promising r-process site

Hydrodynamical simulations : Just, Bauswein, Janka et al. MNRAS (2015)

Neutron Star Mergers: a (very) promising r-process site

Hydrodynamical simulations : Just, Bauswein, Janka et al. MNRAS (2015)

Mass-weighted *consistently* **combined Dynamical** + **Disk ejecta**

Robust production of all $A \ge 90$ r-nuclei with a rather solar distribution.

NSM *may* be a/the dominant site for the r-process nucleosynthesis

Still a major uncertainty affecting the nucleosynthesis in NS mergers: electron (anti)neutrino absorption by free nucleons

Wanajo et al. (2014); Sekiguchi et al. (2015)

Relevance of NS-NS mergers as a plausible astrophysical site for the r-process

1. Total amount of r-process in the Galaxy

- $M_{Gal} \sim 6 \ 10^{10} M_o \text{ of baryons}$ $X_o(Eu) \sim 3.7 \ 10^{-10} M_o$ $\rightarrow M_{Gal}(Eu) \sim 22 M_o$
- NS-NS Yield of Europium : $Y_{\rm Eu} \sim 7 \ 10^{-5} 2 \ 10^{-4} \ {\rm M}_{\rm o}$ (Dynamical+Disk)

 \rightarrow NS-NS rate to produce the Galactic Eu during 13 Gyr

Rate ~ $8 - 20 \text{ Myr}^{-1}$

Compatible with current estimates from observed binary pulsars Rate ~ $3 - 190 \text{ Myr}^{-1}$ (Kim et al. 2010; Dominik et al. 2012)

2. Chemical Evolution of r-elements in the Galaxy (early enrichment of Eu & abundance scatter in low-metallicity stars) « Overall, results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe. » (van de Voort et al. 2015)

Cosmic & Galactic Chemical Evolution Models

On the basis of Galactic chemical evolution model, including cosmological zoom-in simulations, & cosmological evolution model using a hierarchical model for structure formation

[Eu/Fe]

IT HAS BEEN CONCLUDED

- Vangioni et al. (2015): « the Eu cosmic evolution tends to favour NSM as the main astrophysical site for the r process »
- Matteuci et al. (2014) « NSM can be entirely responsible for the production of Eu in the Galaxy if $\tau_{coal} \sim 1$ Myr »
- Tsujimoto et al. (2014) « results demonstrate that NSM occuring at Galactic rate of 12-23Myr⁻¹ are the main site of r-process elements »
- Mennekens et al. (2014) « conclude that except for the earliest evolutionary phase of the Galaxy (~the first 100 Myr), double compact star mergers may be the major production sites of r-process elements »
- Van de Voort et al. (2014) « Overall, results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe. »
- Shen et al. (2014) « argue that compact binary mergers could be the dominant source of r-process nucleosynthesis in the Galaxy »

The r-process distribution in ultra-metal-poor stars

-1.0Differences between the SS r-process log € (S.S. r-process) CS 22892-052 and stellar abundances in metal-poor [Fe/H] = -3.1stars 2.0 -3.0log ε (star) [Fe/H]=-2.8 HD 122563 [Fe/H] = -3.1Honda et al (2007) HD 88609 ApJ 666, 1189 -4.040 50 60 70 80 90 100 110 120 Atomic Number 1.5 r-process) normalized to Sr Continuous distribution of r-abundance STAR [Sr/Fe] [Eu/Fe] HE 1523-090 patterns in metal poor stars falling O CS 31082-001 2.0 log € (S.S. between two extreme cases: A BD+17 3248 +0.9 +0.1 +0.8 CS22892-052 and HD88609 2.5 O HD 115444 +0.3 +0.7 A HD 175305 +0.1 + 0.4BD+10 2498 -0.1 + 0.1elative log ε (star) +0.1 -0.1 △ HD 1397 -0.2 -0.2 3.0 -0.3 -0.5 +0.3 <+0.0 -3.5 typical uncertainty Roederer et al (2010) ApJ 724, 975 50 60 70 80 90 100 110 120 40

Atomic Number

Comparison with observation in low-metallicity r-process-rich stars

2 extreme cases

Dynamical + Disk ejecta (mass averaged)

- for $56 \le Z \le 76$: « Universal » solarlike distribution
- for Z < 56: Deviation wrt solar (0.5dex)

Suppressed dynamical ejecta (only ~1%) in particular for NS-BH systems

- Asymmetric ejecta
- Small ejecta (NS accreted by the BH)

Still major astrophysical questions to be answered, including

• Impact of neutrinos on the neutron richness during dynamical ejection

$$\nu_e + n \rightleftharpoons p + e^-$$
 $\bar{\nu}_e + p \rightleftharpoons n + e^+$

- Frequency and properties of NS binary systems (in part, coalescence time)
- Chemical evolution of r-nuclei in the Galaxy
- Comparison with spectroscopic observation, in particular with r-enrichment in old (ultra-metal-poor) stars
- Observational confirmation

Another uncertainty: nuclear physics input

 $(n,\gamma) - (\gamma,n) - \beta$ competition & Fission recycling

 (γ,n)

 (n,γ)

Main needs

- β-decay
- (n,γ) and (γ,n) rates
- Fission (nif, sf, β df) rates
- Fission Fragments Distributions

Nucleosynthesis requires RATES for some 5000 nuclei ! (and not only masses or β -decay along the oversimplified so-called "r-process path")

simulations rely almost entirely on theoretical predictions

In turn, theoretical models are tuned on available experimental data

Continuum or statistical theory of the compound nucleus

n + (Z,A-1)

 $\alpha + (Z-2, A-2)$

Target Nucleus

Compound Nucleus

Residual Nucleus

$$\sigma_{(a,b)} \propto \sum_{J,\pi} \frac{T_a(J^{\pi})T_b(J^{\pi})}{T_a(J^{\pi}) + T_b(J^{\pi})}$$

T: Transmission coefficient, i.e the probability to favour a given channel $(a,b=n,p,\alpha,\gamma)$

Nuclear inputs to nuclear reaction codes (e.g TALYS)

Nuclear inputs to nuclear reaction codes (e.g TALYS)

Astrophysics Applications

Exotic nuclei, energy or conditions not available in the Lab. Many nuclei (thousands), many properties

MICROSCOPIC DESCRIPTION

(Sound physics models based on first principles)

UNIVERSAL DESCRIPTION

Concern of

(Coherent description of all properties for all nuclei)

PHENOMENOLOGICAL DESCRIPTIONS

ACCURACY RFLIABILITY Phenomenological models (reproduce exp.data) (Sound physics) (Parametrized formulas, Empirical Fits) Classical models fundamental physics (e.g Liquid drop, Droplet) Semi-classical models applied physics **Concern** of ROPHYSICS **Concern of** (e.g Thomas - Fermi) mic-mac models (e.g Classical with micro corrections) semi-microscopic (e.g microscopic models with phenomenological corrections) fully microscopic (e.g mean field, shell model, QRPA) **GLOBAL MICROSCOPIC DESCRIPTIONS**

Nuclear inputs to nuclear reaction codes (e.g TALYS)

UNIVERSAL GLOBAL MICROSCOPIC DESCRIPTION

UNIVERSAL: capable of predicting *all properties* of relevance
GLOBAL: capable of predicting the properties of *all nuclei*MICROSCOPIC: for more *reliable extrapolations* from valley of
stability to drip lines

A necessary condition for a true predictive power a challenge that will require a continued experimental & theoretical effort

Comparison of known (n,y) reaction rates with the statistical model estimates

Impact of the various ingredients on the radiative neutron capture ($E_n \sim 100 \text{keV}$)

STILL MANY OPEN QUESTIONS IN REACTION THEORY

- The reaction model
 - CN vs Direct capture for low-S_n & Isolated Resonance Regime
- Nuclear inputs to the reaction model (almost no exp. data !)
 - **GS properties:** masses (correlations GCM, odd-nuclei)
 - **E1-strength function:** GDR tail, PR, ε_{γ} =0 limit, *T*-dep, PC
 - Nuclear level Densities (at low *E*): *J* and π -description, pairing, shell and collective effects & damping
 - **Optical potential:** the low-*E* isovector imaginary component
 - Fission: fission paths, NLD at the saddle points, FFD
- The β -decay rates
 - Forbidden transitions, deformation effects, odd-nuclei, PC

We are still far from being capable of estimating *reliably* the radiative neutron capture and β -decay of exotic n-rich nuclei (and fission properties even for known nuclei)

Models exist, but corresponding uncertainties are usually not estimated Experimental efforts are fundamental to guide theoretical models !

Measurement of given properties for a large set of nuclei

Direct or indirect observables entering nuclear reaction models

The fundamental role of β -decay rates

(including $\beta dn \& \beta df$)

Gross Theory :

the β -strength function is estimated by folding one-particle strength function via a simple pairing scheme taking into account the corresponding sum rules and even-odd effects.

QRPA approach (Skyrme, Gogny, RMF) with different levels of approx. TDA, separable interactions, inconsistency between Ground & Excited states, spherical approximation, GT only, ...

Recent work within

- EDF+Fermi Liquid Theory (Borzov 2010): spherical, FF incl.
- RHB+QRPA (Marketin et al. 2014): spherical, FF incl.
- Gogny HFB+QRPA (Martini & Péru 2014): def, GT, no FF (yet)

In practice, only a few complete tables (publicly) available

- Tachibana et al. (1990): HFB + Gross Theory 2 (GT + FF)
- Klapdor et al. (1984): Tamm-Dancoff approximation
- Möller et al. (2003): FRDM + QRPA & gross theory for FF

Impact of masses on the r-process nucleosynthesis in NS mergers

- GT2 β -decay rates with consistently estimated Q_{β}
- n-capture rates estimated within the HF+PE+DC model

Impact of β -decay rates on the r-process nucleosynthesis in NS mergers

Large impact of the β-decay rate – set the synthesis timescales
(βdn also influences the location of the peak with the late capture of neutrons released)
→ Need at least deformed "microscopic" calculation (HFB+QRPA) including GT+FF transitions, odd nuclei, PC,

Sensitivity to the fission fragment distribution

along the A=278 isobar (from the N=184 closed shell)

In Summary for the r-process

Our understanding of the r-process nucleosynthesis, i.e. the origin of about half of the nuclei heavier than Fe in the Universe is considered as

one of the top 11 questions in Physics and Astronomy

("Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century": 2003, National research council of the national academies, USA)

Still many open questions

- Site of the r-process ?
- Galactic chemical evolution ?
- Agreement with observation (spectroscopic, GCR, isotopic anomalies, marine sediments, ...)?
- Nuclear needs (site-dependent) ?
- Nuclear inputs (many properties on thousands of exotic n-rich nuclei) ?

The p-process nucleosynthesis

The p-process nucleosynthesis

- **1.** Astrophysics aspects
 - Parametric models: parametric models, including outdated spallation models
 - "Realistic" models:
 - O-Ne layers of massive stars: hydrostatic and explosive phases
 - type Ia Supernova
 - He-accreting sub-Chandrasekhar mass white dwarfs
 - vp process in proton-rich v-driven wind

2. Nuclear Physics aspects:

- Photodisintegration rates
- Neutron-, proton, alpha-capture rates
- β^+ -decay rates
- v-nucleus interaction rates

For about 2000 neutron-deficient (but neutron-rich also in some sites) nuclei

Nuclear needs for p-process calculations

Many nuclear masses and β^+ -decay rates known experimentally

 \rightarrow Almost no p- and α -capture rates known experimentally

Ne/O-rich layers during SNII explosion of massive stars

1. s-process during core He-burning by $^{22}Ne(\alpha,n)^{25}Mg$

explosive supernova phases)

heating at $T=2-3 \ 10^9 \text{ K}$ of the s-enriched & r-seeds

The synthesis of the heavy p-nuclides requires lower-T than the one of the light p-nuclides, which are more resistant to photodisintegrations. More specifically,

- the light ($N \le 50$) p-nuclides are produced in the temperature range 3 10^9 K $\le T \le 3.5 \ 10^9$ K
- the intermediate-mass $50 \le N \le 82$ p-nuclides in the range 2.6 10^9 K $\le T \le 3 \ 10^9$ K
- the heavy $N \ge 82$ p-nuclides in the temperature $2 \ 10^9 \text{ K} \le T \le 2.6 \ 10^9 \text{ K}$

Each p-nucleus is substantially produced in a narrow range of temperatures only. This extreme sensitivity of the results to the peak temperature makes the use of realistic stellar models mandatory

Nuclear flows during the p-process in an SNII explosion

The mean overproduction factor $\langle F_i(M) \rangle$ for a star with mass *M* is defined as the total mass of the p-nuclide *i* produced in its PPLs divided by the corresponding mass if the PPLs had a solar composition. The normalizing factor $F_0(M)$ is the mean overproduction factor averaged over the 35 p-nuclides. With these definitions, all the normalized overproductions would be equal to unity if the derived abundance patterns were solar.

Some discrepancies remain: Mo and Ru p-isotopes, ¹¹³In, ¹¹⁵Sn and ¹³⁸La.

Impact of the nuclear uncertainties on the p-nuclide production

Major nuclear uncertainties from

- GLOBAL alpha-nucleus optical potentials (heavy A>150 p-nuclides)
- GLOBAL nucleon-nucleus potential, NLD, γ-strength (light A<90 p-nuclides) (The ^{92,94}Mo, ^{96,98}Ru discrepancies are most probably not related to nuclear issues)

• p- and α -captures: new measurements (Demokritos, Debrecen, Kalrsruhe, Achen,...) but still not enough contraints on global potential - more theoretical work welcome too

• γ -ray strengths: new experimental information (Konan, Oslo, Duke, GSI, Dresden, ...), but still open debate on the low-energy tail and PDR - more theoretical work welcome

Production of rare species by electron neutrino captures

Neutrino from the proto-neutron stars $(v_e, \overline{v}_e, v_x)$

The production of ¹³⁸La is possible through ¹³⁸Ba(ν_e,e^-)¹³⁸La, but depends on the neutrino luminosity. Similarly, the v-capture also affects the production of ¹¹³In, ¹¹⁵Sn, ¹⁶²Er and ¹⁸⁰Ta.

But still large uncertainties in the v-physics and v-nucleus interaction cross sections !

Production of light p-nuclei in the proton-rich neutrino wind of type-II supernovae: vp-process

Accreting White Dwarf models for type Ia Supernovae

Matter accreted onto the surface of a white dwarf from its binary companion causes regions in its interior to become unstable to thermonuclear runaway. ——— Carbon deflagration/detonation

p-process nucleosynthesis in layers heated at *T*=2-3 10⁹ K (initial composition C+O+Ne)

Initial composition of the heavy seeds

- solar composition
- s-process elements in WD ?
- s-process elements from AGB companion?
- s-process nucleosynthesis during accretion phase ?

SNIa model: W7 (Nomoto et al. 1984)

Ν

Impact of the nuclear uncertainties on the p-nuclide overproduction factor

Heavy seed abundances: s-process enriched from a Z_o-AGB star

Impact of the initial seed abundances on the p-nuclide overproduction factor

Impact of the initial seed abundances on the

In summary...the p-process nucleosynthesis is responsible for n-deficient elements heavier than iron in the Universe

- How to explain the origin of ^{92,94}Mo, ⁹⁶Ru, ¹³⁸La?
- What is the contributions of SN Ia or p-rich v-wind, if any ?
- What are the seed nuclei feeding the p-process ?
- What is the role of neutrinos for rare species ?
- What is the photodissociation rates of nuclei involved ?

Many different nuclear needs for the different nucleosynthesis applications

Different types of astrophysics models

- ++- State of the art: 3D (~ self-consistent) models *p-process in SNIa explosions, r-process in NSM*
- + Realistic 1D (~ self-consistent) models *s-process in Massive Stars*
- Parametrized (semi-realistic) 1D models
 s-process in AGB Stars
- -- Parametrized (unrealistic) 1D models *r-process in v-driven wind*
- --- Phenomenological parametrized site independent models *Canonical s- and r-processes*

Remain critical about the astrophysics models

(even the 3D simulations are far from being free from astrophysical uncertainties!)

Obvious need for accurate and reliable nuclear data, ... but the uncertainties in the astrophysics models most of the time prevail

Conclusions

	ASTRO	NUCLEAR	OBS
BIG-BANG	+	+	+
A<56 SYNTHESIS	+	+ -	+
S-PROCESS	_	+ -	+-
P-PROCESS	_	_	_
R-PROCESS			_

Conclusions

Nuclear physics is a necessary but a not sufficient condition for Nuclear Astrophysics

Still many open astrophysics & nuclear physics questions

The exact role of nuclear physics in Astrophysics will remain unclear as long as the astrophysics sites and the exact nuclear mechanisms of relevance are not fully under control P-process (-/+) S-process (+/-) R-process (-)